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Abstract. The buckling of a finite section of a cylindrical shell resembling a two-dimensional contact lens, and the
collapse of a tubular shell of infinite extent are considered. The deformation is due, respectively, to the application
of an edge force or to a negative transmural pressure. In both cases, the shell develops elastic bending moments
due to the deformation from a specified resting shape according to a linear constitutive equation, accompanied by
in-plane and transverse shear tensions. In the case of a section of a shell with a flat resting shape, classical results
due to Euler and Love show that, as the applied edge force is increased beyond a sequence of thresholds, an infinite
family of deformed shapes becomes possible corresponding to buckled states that bifurcate from the zero-curvature
resting configuration. It is shown here that a corresponding infinite family of shapes is also possible for a finite
shell whose resting shape is a section of circle. These shapes, however, no longer arise from bifurcations, but rather
constitute disconnected solution branches of a nonlinear boundary-value problem. A closed cylindrical shell whose
cross-section has a circular resting shape exhibits similar bifurcations when the difference between the exterior
and interior pressure exceeds a sequence of thresholds, but a shell with a non-circular resting shape deforms into
a multitude of shapes described by isolated solution branches. The computed two-dimensional buckled shapes are
used to reconstruct the three-dimensional shape of a slowly collapsing fluid-conveying vessel. The reconstruction
procedure involves stacking together cross-sections at axial positions that are found by integrating the differential
equation determining the axial pressure distribution in unidirectional pressure-driven flow, subject to a constant
flow rate. The dimensionless coefficient relating the local pressure gradient to the flow rate is computed by solving
the Poisson equation governing unidirectional viscous flow using a boundary-element method, and expressing the
flow rate as a boundary integral involving the shear stress which is available from the solution of the boundary-
integral equation. In an appendix, the energy of the bending state is discussed with reference to specific choices
made by previous authors in various branches of science and engineering.
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1. Introduction

A variety of natural, biological and engineering systems involve thin sheets of a pure or
composite elastic material, and sheet-like molecular networks classified as flexible shells.
In the course of their intended function, the shells deform and may buckle under the influ-
ence of a localized or distributed load due to their weight, an applied system of forces and
torques, an ambient or internal hydrostatic pressure, or a more general hydrodynamic traction.
Deformation is accompanied by the development of stresses whose areal integrals over the
cross-section are recognized as stress resultants or tensions. In the case of shells consisting of
thin elastic sheets, the first moments of the stresses integrated over the cross-section amount
to distributed bending moments. In the case of molecular networks, bending moments arises
due to a preferred orientation of chemical bonds. Mathematical idealization reduces a thin
shell to a material surface with infinitesimal thickness whose dynamics is described by the
Lagrangian geometry of the deformed configuration relative to that in the unstressed state.



158 C. Pozrikidis

Fundamental studies of small and large shell deformations, respectively called buckling
and post-bucking, can be traced back to the seminal works of Euler, von Kàrmàn and Love
[1–3]. The importance of shell mechanics in oceanography, civil, aerospace, and structural
engineering has spawn an immense body of literature including fundamental and applied
studies of statics, dynamics, and stability (e.g. [4–6]). Part of the literature was motivated by
the realization that the deformation of shells under mechanical load or due to flow-structure
interaction is pertinent to a host of problems in materials science, chemical physics, biology,
and biomechanics, and also by the discovery that post-buckling admits a complex solution
space that can be successfully analyzed using modern tools of stability and bifurcation theory,
where it even serves as a paradigm. For example, shell theory has been applied to describe the
collapse of the endothelium surface of pulmonary and blood flow vessels such as bronchiols
and veins [7], the deformation of biological membranes enclosing red blood cells and other
vesicles [8], and the cockling (hygroscopic buckling) of paper [9]. Recently, Steigmann and
Ogden considered the deformation of thin shells coated on the surfaces of elastic media and
established a theoretical framework for the development of constitutive equations regarding
the bending moments [10–12].

In this paper, we consider the deflection and post-buckling of open and closed (tubular)
cylindrical shells with non-planar and non-circular cross-sectional resting shapes. Our main
goal is to elucidate how the curvature of the resting shape of an open shell, and the non-
uniformity of the curvature of a closed tubular shell affect the equilibrium shapes at small
and large deformations. This issue has been discussed by numerous previous authors, but only
in general terms and in the context of shape imperfection, as will be reviewed in subsequent
sections.

In Section 2, we formulate the problem of two-dimensional shell deformation in terms
of the curvature or slope angle of the shell contour in the deformed state, unify and discuss
the merits of the two approaches, and derive some new results. In both cases, we obtain a
boundary-value problem involving an unspecified parameter that is declared an eigenvalue.
In Section 3, we consider the deformation of plates with flat and circular resting shapes,
and illustrate explicitly the transition from double-point bifurcation in solution space to a
solution structure involving disconnected loops. In Section 4, we consider the corresponding
deformation of tubular shells with circular and non-circular resting shapes, and demonstrate a
similar but more subtle behavior.

In Section 5, we consider fluid-carrying tubes collapsing due to a decrease in the internal
pressure with streamwise position associated with a negative pressure gradient necessary to
drive the flow, and develop a method of reconstructing the three-dimensional tube shape in
terms of the available two-dimensional buckled profiles. The two-dimensional cross-sections
are placed at axial positions that are computed by integrating the differential equation gov-
erning the axial pressure distribution subject to a constant flow rate. A dimensionless constant
relating the local pressure gradient to the flow rate is found by solving the Poisson equation
describing unidirectional flow along a tube with a collapsed profile using a boundary-integral
method. A new result is an expression for the flow rate in pressure-driven flow through a tube
with arbitrary cross-section in terms of the boundary distribution of the shear stress, which is
available from the solution of the boundary-integral equation.

In Appendix A, we consider the energetics of the deformation, provide justification for the
linear constitutive equation for the bending moments in terms of the curvature, and establish
a framework for choices made by previous authors concerning the tensions and normal loads
developing along macromolecules, slender bodies of fluid, and fluctuating membranes.
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Figure 1. Illustration of (a) an open cylindrical shell resembling a two-dimensional contact lens, deforming under
the action of an edge force; (b) a closed cylindrical shell deforming under the action of a pressure difference
between the exterior and interior; (c, d) A section of the shell showing the in-plane and transverse shear tensions
τ and q, the bending moment m, and the slope angle θ .

2. Problem statement and governing equations

We consider small and large deformations of open or closed cylindrical shells consisting of
an elastic material. In the first problem, we consider the symmetric deformation of an open
shell of finite extent due to a compressive force F applied at both ends, as illustrated in
Figure 1(a), and seek to compute the shape that the shell assumes after the two ends have
been displaced by a certain distance. Physically, the shell may be identified with a paper
card or a two-dimensional optical contact lens pinched by two fingers at the two ends. In the
second problem, we consider the buckling of an infinite tubular cylindrical shell, as illustrated
in Figure 1(b), and seek to compute the shape that the shell assumes after a certain pressure
difference between the exterior and interior has been applied.

2.1. TENSIONS, BENDING MOMENTS, AND EQUILIBRIUM

We begin formulating the governing equations by considering the shell in the deformed state,
and identify point particles by the arc length l. In the case of the open shell depicted in



160 C. Pozrikidis

Figure 1(a), the arc length varies in the range [−L,L], where 2L is the total arc length of the
shell, an the origin has been placed at the mid-point. In the case of the closed shell depicted
in Figure 1(b), the arc length varies in the range [0, L], where L is the shell perimeter.

Because of the deformation, the shell develops an in-plane tension τ , a transverse shear
tension q, and a bending momentm, as illustrated in Figure 1(c). The vectorial tension exerted
on a cross-section is given by

T = τ t + qn, (2.1)

where t is the unit tangent vector pointing in the direction of increasing arc length l, and n is
the unit normal vector.

In the case of the open shell depicted in Figure 1(a), global equilibrium requires T =
−F ex , where ex is the unit vector along the x axis. Under more general circumstances, a force
balance requires

dT
dl

+ p = d

dl
(τ t + qn)+ p = 0, (2.2)

where p is the distributed load due, for example, to hydrostatic pressure or a more general
hydrodynamic traction. Expanding out the derivatives of the products on the left-hand side of
(2.2), and using the relations

dt
dl

+ κn = 0,
dn
dl

− κt = 0, (2.3)

where κ is the curvature of the shell in the xy plane, we obtain the normal and tangential force
balances

−κτ + dq

dl
= −p·n ≡ −pn, κq + dτ

dl
= −p·t ≡ −pt . (2.4)

In the case of the open shell depicted in Figure 1(a), pt and pn both vanish; in the case of the
closed shell depicted in Figure 1(b), pt vanishes but pn ≡ −�p, where�p ≡ pext −pint is the
difference between the external and internal pressure. Solving the first of Equations (2.4) for
τ , and substituting the result into the second equation with pt = 0, we derive a second-order
differential equation for the transverse shear tension,

d

dl

[
1

κ

(
dq

dl
+ pn

)]
+ κq = 0. (2.5)

Performing next a torque balance over an infinitesimal section of the shell, we find

q = dm

dl
. (2.6)

To this end, we introduce a linear constitutive equation for the bending moments expressed
by the relation

m = κB(κ − κR), (2.7)

where κB is the bending modulus, and κR(l) is the curvature of the shell in a resting con-
figuration where the bending moments are assumed to vanish [11]. Justification for Equation
(2.7) will be provided in Appendix A. The linear equation (2.7) is expected to be accurate
for sufficiently small changes in curvature; when the changes are no longer small, a nonlinear
constitutive equation must be employed.

Substituting (2.7) in (2.6), and using the resulting expression to eliminate q from (2.5), we
find
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d

dl

[
1

κ

(
d2(κ − κR)

dl2
+ pn

κB

)]
+ κ d(κ − κR)

dl
= 0, (2.8)

which can be rearranged into

d

dl

[
1

κ

(
d2(κ − κR)

dl2
+ pn

κB
+ 1

2
κ3

)]
− κ dκR

dl
= 0. (2.9)

Integrating (2.9) once with respect to l, we derive the integro-differential equation

d2κ

dl2
= −1

2
κ(κ2 + c)− pn

κB
+ d2κR

dl2
+ κ

∫ l

l0

κ(l′)
dκR
dl′

dl′, (2.10)

where c is an integration constant with dimensions of inverse squared length, and l0 is an
arbitrarily specified arc length.

Using the first of Equations (2.4) in conjunction with Equations (2.6) and (2.7), we find
that the in-plane tension is given by

τ = −1

2
κB(κ

2 + c − 2
∫ l

l0

κ
dκR
dl′

dl′). (2.11)

It is important to emphasize that, unlike (2.7), expression (2.11) is not a constitutive equa-
tion relating the in-plane tension to deformation, but rather expresses an equilibrium condition.
An additional constitutive equation may be imposed, and its role will be to determine the total
length of the shell and the relative distribution of point particles along the deformed shape with
respect to the resting configuration. This distinction has been the source of some confusion in
the literature, as will be discussed in Appendix A.

2.2. OPEN SHELLS

In the case of the open shell depicted in Figure 1(a), physical considerations demand that the
bending moments vanish at the two ends,

κ(x = ±L) = κR. (2.12)

Equation (2.10) is then to be solved over the half-length 0 < l < L subject to (2.12) and to
the symmetry condition(

dκ

dl

)
l=0

= 0, (2.13)

requiring that the curvature reaches an extremum at the mid-point.
The slope angle θ defined in Figure 1(d) is related to the curvature by the equation κ =

dθ/dl. Substituting this expression in the equilibrium equations (2.4) with pn = 0 and pt =
0, we obtain the first-order differential equations −τ + dq/dθ = 0 and q + dτ/dθ = 0,
which may be combined into the uncoupled second-order equations d2τ/dθ2 + τ = 0 and
d2q/dθ2 + q = 0. A solution that respects the global force balance is given by τ = −F cos θ
and q = −F sin θ . Using the torque balance (2.6) along with the constitutive equation (2.7),
we find

d2θ

dl2
= − F

κB
sin θ + dκR

dl
. (2.14)
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The symmetry condition (2.13) requires that θ vanish at the mid-point, θ(l = 0) = 0, and
condition (2.12) requires κ(l = L) = (dθ/dl)(l = ±L) = κR.

Equation (2.14) for the slope angle is an alternative to Equation (2.10) for the curvature.
The two formulations have complementary strengths and weaknesses regarding facility for
analytical and numerical computation, as will be discussed in Section 3. A generalization of
these equations describes the shape of a heavy elastic or a circular shell that is pinned on an
inclined plane on one end and is free to roll on the other end [13–15].

2.3. TUBULAR SHELLS

In the case of a closed shell depicted in Figure 1(b), Equation (2.10) or its ancestral Equation
(2.8) is to be solved subject to the symmetry condition (2.13) applied at two judiciously chosen
points to yield a desired symmetry, as will be discussed in Section 4.

When the resting curvature of the shell is uniform, a formulation in terms of the slope angle
θ based on a variational principle yields the nonlinear integrodifferential equation

d2θ

dl2
+ pn

∫ l

l0

cos[θ(l)− θ(l′)]dl′ = γ cos(θ + δ), (2.15)

where γ and δ are two a priori unknown constants [16, 17]. Although Equation (2.15) is more
cumbersome than its counterpart (2.14) for the open shell, it is nonetheless a useful starting
point in theoretical studies of existence of solution.

2.4. SHELL SHAPE IN TERMS OF THE CURVATURE

To compute the shape of the deformed shell in terms of the curvature distribution κ(l), we
regard the x and y coordinates of point particles along the shell as functions of arc length l,
writing x = x1(l) and y = x2(l). By definition then, x′2

1 + x′2
2 = 1, where a prime denotes

a derivative with respect to l. Using elementary differential geometry, we derive the relations
κ = −x′′

1x
′
2 +x′

1x
′′
2 = −x′′

1/x
′
2 = x′′

2/x
′
1. Next, we introduce the functions x3 ≡ x′ and x4 ≡ y′,

and obtain the following system of four nonlinear differential equations,

dx1

dl
= x3,

dx2

dl
= x4,

dx3

dl
= −κx4,

dx4

dl
= κx3. (2.16)

The initial conditions accompanying this system are x1(0) = 0, x2(0) = 0, x3(0) = 1, and
x4(0) = 0, reflecting the choice of the Cartesian axes illustrated in Figures 1(a, b).

3. Flat plates and circular arcs

When the resting curvature of an open shell is uniform, that is, κR is independent of l which
means that the unstressed shell is either flat or circular, the last two terms on the right-hand side
of (2.10) vanish. Setting pn = 0, we obtain the second-order ordinary differential equation

d2κ

dl2
= −1

2
κ(κ2 + c). (3.1)

Referring to equation (2.11), we set τ(l = 0) = −F and find 2F = κB(κ
2
0 + c), where

κ0 ≡ κ(l = 0) is the curvature at the mid-point. Eliminating the constant c in favor of the
edge force F , we derive the equation
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d2κ

dl2
= −1

2
κ

(
κ2 − κ2

0 + 2
F

κB

)
, (3.2)

accompanied by the boundary conditions (2.12) and (2.13). Multiplying both sides of (3.2)
by dκ/dl, integrating once with respect to l, and enforcing the symmetry condition (2.13), we
find(

dκ

dl

)2

= 1

4
(κ2

0 − κ2)

(
4F

κB
− κ2

0 + κ2

)
. (3.3)

Next, we require that the right-hand side of (3.3) is non-negative, and derive the constraint

κ2
0 − 4F

κB
≤ κ2 ≤ κ2

0 . (3.4)

Evaluating this inequality at the end of the plate, and rearranging, we find

κ2
R ≤ κ2

0 ≤ κ2
R + 4F

κB
, (3.5)

which places a bound on the range of variation of the mid-point curvature with respect to the
reference value.

We proceed further by assuming that the maximum curvature occurs at the mid-point, and
introduce the parametrization

κ = κ0 cos φ, (3.6)

where the angle φ ranges from 0 at the mid-point to nπ − φR at the end, n is an integer,
and the principal angle φR is restricted to lie in the range [0, π ]; if the resting shape is flat,
φR = π/2. The dynamic condition at the edges requires κR = κ0 cos(nπ − φR). Substituting
the transformation (3.6) in (3.3), we find(

dφ

dl

)2

= F

κB
(1 − ω2

0 sin2 φ), (3.7)

where ω2
0 ≡ κ2

0κB/(4F). Rearranging this definition, we find that the reduced curvature at the
mid-point is given by

κ0 = ±2ω0F̂
1/2, (3.8)

where F̂ ≡ FL2/κB . Rearranging (3.7), and integrating over half the length of the shell, we
obtain

F̂ 1/2 =
∫ nπ−φR

0

dφ√
1 − ω2

0 sin2 φ

. (3.9)

Expressions (3.8) and (3.9) provide us with a parametric representation for the response
diagram, Lκ0 versus F̂ , in terms of the dimensionless parameter ω0 varying in the range
[0, 1].

Correspondingly, Equation (2.14) reduces to a well-known equation describing the buck-
ling of an elastica due to a prescribed end-thrust ([3, Section 262])

d2θ

dl2
= − F

κB
sin θ, (3.10)
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accompanied by the symmetry condition θ(l = 0) = 0 and the requirement (dθ/dl)(l = L) =
κR ensuring that the bending moment vanishes at the end. Multiplying both sides of (3.10) by
dθ/dl, and integrating once with respect to l, we obtain the first-order nonlinear equation(

dθ

dl

)2

= 2
F

κB
(cos θ − cos α)+ κ2

R, (3.11)

where α ≡ θ(l = L) is the principal slope angle at the right end, restricted to lie in the range
[0, π ]. Applying (3.11) at the mid-point where θ = 0, and rearranging, we find

sin2 α

2
= ω2

0 − ω2
R, (3.12)

where ω2
R ≡ κ2

RκB/(4F); for a shell with a flat resting shape, ωR vanishes. Equation (3.12)
provides us with a relationship between the end-slope angle and the mid-point curvature, and
requires ω2

0 ≤ 1 + ω2
R, in agreement with (3.5).

To show consistency with the curvature formulation, we rearrange (3.10) and integrate over
the length of the plate to find

F̂ 1/2 = 1√
2

∫ nπ−α

0

dθ ′√
cos θ ′ − cos α + 2ω2

R

= 1

2

∫ nπ−α

0

dθ ′√
sin2 α

2
+ ω2

R − sin2 θ
′

2

= 1

2

∫ nπ−α

0

dθ ′√
ω2

0 − sin2 θ
′

2

.
(3.13)

When the curvature of the resting shape is sufficiently small, we can introduce the transfor-
mation

sin
θ

2
= ω0 sinφ, (3.14)

and substitute it in the last integral of (3.13) to recover (3.9), thereby reconciling the two
formulations.

3.1. FLAT PLATE

When the resting shape of a shell is flat, in which case φR = π/2 and ω2
0 ≤ 1, equation (3.9)

reduces to

F̂ 1/2 = (2n− 1)Kc(ω0), (3.15)

where Kc is the complete elliptic integral of the first kind; expression (3.8) then yields

Lκ0 = ±2(2n − 1)ω0Kc(ω0). (3.16)

To study small deflections, we let ω0 tend to zero, note that Kc(0) = π/2, and find the well-
known bifurcation points

F̂ = αn = (2n− 1)2
π2

4
. (3.17)
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Figure 2. Solution branches for the flat plate: mid-point curvature versus edge force.

Small deflections from the flat shape are thus possible only when the dimensionless force
F̂ takes one of the critical values αn. Alternatively, we may linearize the right-hand side of
(3.10) and obtain d2θ/dl2 = −(F/κB)θ , whose nontrivial solution is θ = A sin(l

√
F/κB),

where A is an arbitrary constant. The boundary condition dθ/dl = 0 at the end of the plate is
satisfied only when F̂ takes one of the values displayed in (3.17).

Figure 2 shows a family of solution branches represented by graphs of the dimensionless
mid-point curvature Lκ0 plotted against the dimensionless force F̂ for n = 1, 2, . . . , 15,
prepared using the parametric representation provided by (3.15) and (3.16). The results reveal
double-point symmetric bifurcations at the critical points given in (3.17).

Figure 3 illustrates a family of buckled shapes corresponding to the first solution branch
n = 1, for ω2

0 = 0·001, 0·01, 0·02, 0·05, 0·10, 0·20, . . . , 0·9, 0·95, 0·97, 0·99 and 0·999,
corresponding to 2F̂ /π = 1·00025, 1·0025, 1·0051, 1·00129, 1·020, 1·057, . . . , 1·641, 1·852,
2·010, 2·353 and 3·082. These shapes were computed by solving Equation (3.2) and then
integrating system (2.16) using the fourth-order Runge-Kutta method. The self-intersecting
shapes may be identified with deformed half-plates pinned to a horizontal wall on one end,
and pulled horizontally toward the pinned point from the other end. In the limit as ω0 tends to
unity, we obtain a flat plate with a mid-point knot.

Love ([3 Section 268]) shows that the simplest family of shapes corresponding to n = 1,
characterized by the absence of inflection points, is stable, whereas all other shapes corre-
sponding to n > 1 are unstable (see also Reiss [18]). Thus, in real life, as the reduced edge
force F̂ is increased, the plate remains flat until F̂ = α1, and then it deforms to obtain the
family of shapes displayed in Figure 3.

3.2. CIRCULAR ARCS

When the resting shape of a plate is curved, the plate deforms as soon as an edge force
is applied, however small. As a consequence, the bifurcation points in the solution space
displayed in Figure 2 are expected to disappear, which means that the curvature of the resting
shape acts as a singular perturbation. This behavior is evident in Thurston’s results around
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Figure 3. Deformed plate shapes corresponding to the first solution branch n = 1 depicted in Figure 2.

the first bifurcation point for a plate whose unstressed shape is a part of a sinusoid [19]; the
deviation from the flat shape was regarded as an imperfection from the ideal state.

Instabilities and singular perturbations of bifurcations in the solution space of discrete sys-
tems involving interconnected elastic springs were first discussed by Koiter ([25, Chapter 2]).
Matkowsky and Reiss [21] presented a physical model consisting of two rigid massless rods
connected by a linear torsional spring, which can be considered as the discrete counterpart of a
curved plate, and demonstrate that a singular perturbation arises in the solution space of a cu-
bic algebraic equation describing equilibrium. Similar models were discussed by Golubitsky
and Schaeffer [22, 23]. A comprehensive review of bifurcation theory as applied to elasticity
was given more recently by Antman ([5, Chapter V]).

To show explicitly the overall change of the solution space due to the curvature of the rest-
ing configuration, we consider the deformation of a plate whose resting shape is a circular arc
with half-aperture angle βπ . When β = 0, the undeformed shell is a flat plate, whereas when
β = 0·5, the undeformed shell a semi-circle. Deformed shapes were computed by solving the
boundary-value problem expressed by equation (3.2) with accompanying boundary conditions
using the shooting method combined with Newton’s iterations. The numerical integration of
the differential equation was carried out using the fourth-order Runge-Kutta method.

Figure 4 shows solution branches for β = 0·1 and 0·5, the latter corresponding to the
semi-circular resting shape. The dashed lines repeat the graphs of Figure 2 for the flat plate,
and are included to provide a frame of reference. The numerical results confirm that the
bifurcation points disappear, and pairs of solution branches merge to yield closed loops. This
behavior is typical of problems exhibiting singular perturbations of break-point bifurcations
in the solution space of ordinary and partial differential equations due to asymmetry or other
imperfections (e.g. [20–24]).

Bifurcation theory suggests that the first upward solution branches displayed in Figure 4
are stable, whereas the first downward branches are stable only up to the vertical turning point;
all other solution branches are unstable are thus devoid of a physical meaning ([24, pp.37–
38]). Three families of deformed shells with semi-circular resting shape, corresponding to
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Figure 4. Solution branches for a deformed shell whose resting shape is a circular arc with β = 0·1 (thin solid
line) and 0·5 (thick solid line); the dashed lines represent solution branches for the flat plate depicted in Figure 2.

β = 0·5, are shown in Figure 5. The families displayed in Figure 5(a) are stable, whereas
those displayed in Figure 5(b) are unstable.

4. Tubular shells

In the second part of our study, we consider the deformation of closed shells illustrated in
Figure 1(b), and study equilibrium shapes established as the difference between the external
and internal pressure �p = pext − pint, equal to the negative of the transmural pressure, is
raised from the value of zero corresponding to the resting, but not necessarily unstressed,
shape.

4.1. SHELLS WITH UNIFORM RESTING CURVATURE

Suppose that the resting curvature of the shell is uniform, that is, κR is independent of arc
length l. If the shell is made of a rolled-up elastic sheet, then κR vanishes. Setting the last two
terms on the right-hand side of (2.10) equal to zero, and recalling that the normal load is given
by pn = −�p, we obtain the generalized form of Equation (3.1),

d2κ

dl2
= −1

2
κ(κ2 + c)+ �p

κB
. (4.1)

Equation (4.1) admits an obvious solution corresponding to uniform curvature κ = κu and
c = −κ2

u + 2�p/(κBκu). Substituting these expressions in the right-hand side of (2.11), we
find the uniform in-plane tension τ = −�p/κu expressing the Young–Laplace law.

To describe small deformations from the circular cross-section, we set κ = κu + εκ ′,
where ε is a dimensionless number whose magnitude is much less than unity, substitute this
expression in (4.1), and linearize with respect to ε while holding c constant to find

d2κ ′

dl2
= −λ2κ ′, (4.2)
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Figure 5. Families of deformed shapes of a shell with semi-circular resting shape. (a) First upward solution branch

(stable) for 2
√
F̂ /π = 0·0 (thick line), 0·5, 0·8, 1·0, 1·5, 2·0 and 3·2; and first downward solution branch (stable)

for 2
√
F̂ /π = 1·56 (thick line), 1·6, 1·8, 2·0, 2·5 and 3·0. (b) Second upward solution branch (unstable) for

2
√
F̂ /π = 3·4 (thick line), 3·7, 4·0, 4·5 and 5·0.
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where we have defined

λ2 ≡ κ2
u + �p

κBκu
. (4.3)

Without loss of generality, we may express the solution of (4.2) in the form κ ′ = A cos(λl),
whereA is an arbitrary constant, and require the periodicity condition λ = mκu, wherem is an
integer representing the circumferential mode. Rearranging, we find that small deformations
are possible only when the reduced pressure difference takes the values

�p̂ ≡ �p

κBκ
3
u

= βm ≡ m2 − 1, (4.4)

in agreement with classical results on the buckling of cylindrical shells (e.g. ([4], [26 p. 177]).
Our earlier results for the flat plate suggest that these values correspond to bifurcation points
in the solution space.

To compute the shapes of deformed shells, we may work as in Section 3 and convert (4.1)
into a first-order equation whose general solution may be expressed in terms of the elliptic
cosine function involving two a priori unknown scalar parameters [27]. It is more expedient,
however, to solve the boundary-value problem expressed by the second-order equation (4.1)
using a shooting method, where the trial variables are the reduced curvature at the origin κ0/κu
and the integration constant c. For the inextensible shell presently considered, L = 2π/κu,
where L is the shell perimeter. The objective functions whose simultaneous zeros are desired
are

f1(κ0, c) = κ(l = L/m)− κ0, f2(κ0, c) =
∫ L/(2m)

0
κdl = π

m
. (4.5)

In the numerical implementation of the shooting method, the differential equation was
solved using the fourth-order Runge–Kutta method, and the corrections were done using
Newton’s method. Previous authors have implemented similar procedures to compute families
of deformed tube shapes, but did not display the structure of the solution space in terms of a
properly defined deflection parameter [16, 17, 28].

Numerical results for the three lowest modes m = 2, 3 and 4 are shown in Figure 6. In
agreement with small-deflection theory, solution branches emanate from the critical points
displayed in (4.4). Each mode is described by an upper solution branch with high curvature
and a lower branch with low and possibly negative curvature. The corresponding shapes, how-
ever, are identical, with the two conjugate curvatures corresponding to the points of maximum
inward and outward radial deflection. Although the stability of the solution branches has not
been established, experience suggests that the shell will remain circular until the first critical
point β1 = 3, and it will them buckle following the first solution branch corresponding to
m = 2.

Figure 7 displays a family of buckled shapes corresponding to the mode m = 2 for �p̂ =
3·1, 3·2, 3·3, 3·4, 3·5, 4·0, 4·5, 5·0 and 5·247. As�p̂ is increased, the cross-section of the shell
becomes elliptical and then biconcave. The dimples of the biconcave disk come into point-
wise contact at the critical dimensionless pressure difference �p̂cr = 5·247, in agreement
with the results of previous authors [28].
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Figure 6. Solution space for a cylindrical shell with circular cross-section, showing the bifurcation of modes m =
2, 3, and 4, emanating from the first three critical points �p̂ = β1 = 3, β2 = 8 and β3 = 15.

Figure 7. Deformed shapes of a cylindrical tube according to the mode m = 2 for �p̂ = 3·1, 3·2, 3·3, 3·4, 3·5,
4·0, 4·5, 5·0 and 5·247 where touching occurs.

4.2. NON-CIRCULAR SHELLS

The solution space illustrated in Figure 6 is similar in structure to that displayed in Figure 2
for the flat plate, in the sense that double-point bifurcations occur at an infinite sequence of
critical points βm. The degeneracy arises because of the axial symmetry of the circular resting
shape. Our experience with the curved plate suggests that the non-uniform curvature of the
resting shape will cause a singular perturbation in the double-point bifurcations, similar to
that discussed in Section 3 for the circular resting plate.

To compute the shape of tubular shells with non-circular resting shapes, we introduce the
intermediate function g, decompose Equation (2.9) into the system
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Figure 8. Solution space for a shell with an elliptical-like resting shape corresponding to s = 2. The dashed lines
represent solution branches of the circular shell for modes m =2, 3 and 4.

dg

dl
= κ dκR

dl
,

d2κ

dl2
= �p

κB
− 1

2
κ3 + d2κR

dl2
+ κg, (4.6)

and solve the boundary-value problem using a shooting method similar to that described in
Section 4.1, where the trial variables are the values of κ0/κu and g(0). The objective functions
are given in Equations (4.5) with c replaced by g(0), and with m = 1 to accommodate all
shapes.

In the numerical studies, we consider non-circular resting shapes exhibiting s-fold sym-
metry with respect to arc length. The curvature of the resting shape is described by the
equation

κR(l) = κ̄ + κ ′ cos(slκu), (4.7)

where κu is the equivalent curvature defined by the equation L = 2π/κu, κ̄ is the arc-length-
averaged curvature, κ ′ is the amplitude of the curvature, and s = 2, 3, . . . . The mode s = 2
corresponds to an elliptical-like resting shape.

The solid lines in Figure 8 illustrate the solution space for a shell with an elliptical-like
resting shape described by Equation (4.7) with s = 2 and κ ′/κu = 0·25. Each one of the
displayed solution branches corresponds to a distinct shape. The dotted lines represent the
solution space of the circular shell displayed earlier in Figure 6. The break of symmetry due to
the non-circular resting shape causes a singular perturbation in the structure of the bifurcation
diagram around the resonant critical point m = s = 2, similar to that displayed in Figure 4 for
a circular plate. The numerical results indicate that the double-point bifurcations are broken
at the m = 2 mode but not at the m = 3 mode. In particular, the broken lower branch of
the m = 2 mode joins with the upper branch of the m = 4 through a nearly horizontal
bridge to form a new solution branch from which them = 3 mode emanates. Several previous
authors have computed deformed shapes of tubes with elliptical resting shapes, but did not
recognize the possibility of multiple solution branches that are likely to be significant for the
understanding of the collapse of natural and artificial pulmonary and blood vessels [29–31].
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All solution branches, with the exception of the one drawn with the heavy line in Figure 8,
display a four-fold subharmonic periodicity with respect to arc length. Figure 9(a) shows a
family of cross-sectional shapes corresponding to the first upward branch, for �p̂ = 0, 1·0,
2·0, 3·0, 3·5, 4·0, 4·5 and 5·0. Figure 9(b, c) shows three possible shapes for �p̂ = 6·0 and
10·0. The compact shape in Figure 9(b) corresponds to the nearly horizontal solution branch
which is expected to be unstable. All three shapes displayed in Figure 9(c) are expected to be
unstable.

The solid lines in Figure 10 illustrate the solution space for a tube whose resting shape
is described by Equation (4.7) with s = 3 and κ ′/κu = 0·25. The dashed lines represent
the solution branches of the circular shell for modes m = 2, 3 and 4. The branches drawn
with the dotted lines correspond to shapes that are identical to those of the branches plotted
with the solid lines, and have been included to demonstrate consistency with the results for
the circular shell. In the case of the s = 3 mode, the break of symmetry causes a singular
perturbation of the resonant bifurcation point s = m = 3. The rest of the bifurcation points
seem to be unaffected by the non-uniformity of the reference curvature. Figure 11 shows three
possible shapes for �p̂ = 6·0 and 15. The self-intersecting shapes are clearly unphysical, but
the smooth shapes are plausible.

5. Flow through a collapsing tube

Consider now steady pressure-driven viscous flow through a collapsing tube whose cross-
section changes slowly in the axial direction z, so that the flow may be considered to be
locally unidirectional. Subject to this approximation, the axial component of the velocity, uz,
satisfies the parametrically forced Poisson equation

∇2uz = −G(z)
µ
, (5.1)

where ∇2 ≡ ∂2/∂x2 + ∂2/∂y2 is the Laplacian operator over the tube cross-section, G(z) ≡
−dpint/dz is the negative of the pressure gradient in the streamwise direction inside the tube,
and µ is the fluid viscosity. The no-slip boundary condition requires that uz vanish around the
contour of the tube in the xy plane. The flow rate through the tube may be expressed in the
form

Q ≡
∫
uzdxdy = δ(z)Gπa

4

8µ
, (5.2)

where the integration is over the tube cross-section, δ is the dimensionless hydraulic conduc-
tivity coefficient determined by the tube cross-sectional area and shape, a = L/(2π) is the
equivalent tube radius, and L is the tube perimeter. In the case of a circular tube, a is the tube
radius and Poiseuille’s law requires δ = 1. Our discussion in Section 4 suggests that the tube
contour, and thus δ, is a function of the negative of the transmural pressure �p ≡ pext − pint.

Rearranging (5.2), using the definition of G, and assuming that the external pressure is
constant, we derive an ordinary differential equation for �p,

dz = πa4

8µQ
δ(z) d�p, (5.3)

which may be recast into the dimensionless form
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Figure 9. Buckling of a shell with an elliptical-like resting shape corresponding to s = 2 and κ ′/κu = 0·25. (a)
Deformed shapes along the first upward solution branch displayed in Figure 8. Three possible shapes for (b)�p̂ =
6·0 and (c) 10·0.



174 C. Pozrikidis

Figure 10. Solution space for a shell with a resting shape corresponding to s = 3 and κ ′/κu = 0·25.

Figure 11. Buckling of a shell with a resting shape corresponding to s = 3 and κ ′/κu = 0·25. Three possible
shapes for (a) �p̂ = 6·0, and (b) �p̂ = 15·0.

dẑ = δ(ẑ) d�p̂, (5.4)

where ẑ ≡ zQ̂/a is the reduced axial position, and Q̂ ≡ 8µQ/(πκB) is a dimensionless
flow rate. Assuming that the tube starts collapsing at z = z0 where �p̂ = βm, as shown
in Equation (4.4), we may integrate Equation (5.4) to generate the function �p̂(ẑ) and its
inverse. Once this has been accomplished, the three-dimensional shape of a collapsing tube
may be reconstructed by stacking adjacent cross-sections next to one another, spacing them
by appropriate distances.

Flaherty et al. (1972) presented a sketchy graph of the hydraulic conductivity δ(�p̂), but
did not discuss the numerical method or the accuracy of their computations [28]. We have
reformulated the Poisson Equation (5.1) as an integral equation for the boundary distribution
of the shear stress, and then solved it using a boundary element method. The numerical pro-
cedure involves decomposing the axial velocity uz into a particular component v that satisfies
the Poisson equation and a homogeneous component f that satisfies Laplace’s equation, and
then solving for the boundary distribution of the normal derivative of the homogeneous contri-
bution. The end-points of the boundary elements are generated by solving the boundary-value
problem discussed in Section 4. Once the boundary distribution of the normal derivative is
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Figure 12. Hydraulic conductivity δ (solid line) and axial position ẑ (dashed line) plotted against �p̂ for the first
solution branch corresponding to m = 2, up to the point where touching occurs.

Figure 13. Three-dimensional shape of a collapsing tube reconstructed in terms of two-dimensional
cross-sections.

available, the flow rateQ and coefficient δ are computed by evaluating a boundary integral, as
discussed in Appendix B. Testing showed that 128 boundary elements around the tube contour
are sufficient for obtaining δ accurate to the third significant figure.

The solid line in Figure 12 shows a graph of the dimensionless conductivity δ plotted
against �p̂ for the first solution branch corresponding to m = 2. The line terminates at the
point where opposite sections of the tube come into point-wise contact at a critical transmural
pressure, as illustrated in Figure 7. The dashed line shows the corresponding axial position
ẑ generated by integrating Equation (5.4) using a numerical method. The results were used
to reconstruct the three-dimensional shape of a collapsing tube in terms of two-dimensional
cross-sections, as discussed after Equation (5.4), and the result is shown in Figure 13. This
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illustration is similar to that presented by previous authors using more involved finite-element
methods [32, 33].

6. Discussion

We have formulated the problem of deflection and post-buckling of elastic plates and tubular
elastic shell with arbitrary resting shapes as a combined boundary-value nonlinear eigenvalue
problem for the curvature or slope angle, thereby unifying and extending the work of previous
authors. Numerical results have demonstrated explicitly that a non-zero or non-uniform resting
curvature causes a singular perturbation in the structure of the solution space near bifurcation
points, in agreement with theoretical predictions.

We have developed a procedure by which two-dimensional shapes may be stacked together
to reconstruct the three-dimensional shape of a slowly collapsing tube carrying a viscous fluid
in pressure-driven flow. The assumption of locally unidirectional flow, similar to the boundary-
layer approximation, prevents us from taking into consideration boundary conditions imposed
at the end of the tube which may be clamped at a rigid junction. To study such configurations,
the full three-dimensional problem must be considered.

The numerical methods presented in this paper have been extended to study the buckling
and collapse of heavy shells resting on a horizontal or inclined plane. Results of numerical
studies will be reported in a future communication.
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Appendix A. Constitative equations for bending moments

In this appendix, we establish a basis for the linear constitutive equation regarding the bending
moments, Equation (2.7), in the particular case of inextensible shells whose arc length is
locally and globally preserved during the deformation.

Considering first the open shell depicted in Figure 1(a), we introduce the bending-energy
functional

E ≡ 1

2
κB

∫ L

−L
(κ − κR)2dl + 2Fx(l = L)

= 1

2
κB

∫ L

−L

[
∂2x
∂l2

· ∂
2x
∂l2

− 2κR

(
∂2x
∂l2

· ∂
2x
∂l2

)1/2

+ κ2
R

]
dl + 2F

∫ L

0

dx

dl
dl,

(A1)

where x denotes the position of point particles along the shell, the subscript R signifies the
resting state, and the integration is performed along the instantaneous shell shape; the curva-
ture has been expressed in the form κ = |∂2x/∂l2|. The energy variation due to an infinitesimal
virtual displacement δx that preserves the arc length between any two point particles along the
shell is given by

δE = κB
∫ L

−L
α
∂2x
∂l2

· ∂
2δx
∂l2

dl + Fδx(l = L), (A2)
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where α ≡ 1 − κR/κ . Integrating (A2) twice, we derive the preferred form

δE = κB

∫ L

−L
∂2

∂l2

(
α
∂2x
∂l2

)
· δx dl

+κB
[
α
∂2x
∂l2

· ∂δx
∂l

− ∂

∂l

(
α
∂2x
∂l2

)
· δx

]L
−L

+ Fδx(l = L).
(A3)

Now, because of the boundary condition (2.12), α vanishes at the two ends, α(l = ±L) = 0,
and (A3) simplifies to

δE = −κB
∫ L

−L
∂2

∂l2
[(κ − κR)n] · δx dl + Fδx(l = L), (A4)

which may be recast into the form

δE = −κB
∫ L

−L
∂

∂l
[κ(κ − κR)t + ∂(κ − κR)

∂l
n] · δx dl + Fδx(l = L). (A5)

The inextensibility condition requires that the virtual displacements are subject to the
constraint

t · ∂δx
∂l

= 0, (A6)

which suggests the identity∫ L

−L
∂

∂l
[f (l)t] · δx dl = 0, (A7)

where f (l) is an arbitrary function.
Now, the principle of virtual displacements provides us with an integral equation of the

first kind for the membrane load p,

δE =
∫ L

−L
p · δx dl + Fδx(l = L). (A8)

Comparing (A8) to (A5), and taking into consideration (A7), we find

p = −κB ∂
∂l

[
[κ(κ − κR)+ f (l)] t + ∂(κ − κR)

∂l
n
]
. (A9)

Comparing further (A9) to (2.2) and (2.6), we deduce the linear constitutive for the bending
moments m, Equation (2.7). An analogous deduction for the in-plane tension τ is prohibited
by the presence of the eigenfunction f (l). Carrying out the differentiation on the right-hand
side of (A9), we find that the normal component of the load is given by

pn = κ2(κ − κR)+ κf (l)− ∂2(κ − κR)
∂l2

. (A10)

When the resting curvature vanishes, Equation (A9) takes the simpler form

p = κB

[
− ∂
∂l

[f (l)∂x
∂l

] + ∂4x
∂l4

]
. (A11)
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Similar results are obtained for the closed shell depicted in Figure 1(b).
Previous authors have used expressions (A9)–(A11) with specific choices for the resting

curvature and for the indeterminate function f (l), but did not acknowledge that their choice
was arbitrary. Harris and Hearst [34] considered the dynamics of a polymer molecule that
develops spring-like forces and bending moments, and assumed that f (l) is a constant, de-
noted by 1, playing the role of a Lagrange multiplier. Setting the load p equal to the rate of
change of momentum of an effective distributed molecular mass, they transformed (A11) into
an equation of motion for the molecule centerline, and then developed a relation between 1
and the statistical properties of the fluctuating motion. Liverpool and Edwards [35] considered
the evolution of a meandering river, set κR = 0 and f (l) = 0, and identified the right-hand
side of (A10) with with the rate of displacement normal to the centerline. A similar choice
was made more recently by Stelitano and Rothman [36] in a numerical study of membrane
fluctuations in a viscous medium.

Appendix B. Flow rate along a cylindrical tube with arbitrary cross-section

In this appendix, we develop an expression for the flow rate along a cylindrical tube in terms
of the boundary distribution of the shear stress, in pressure-driven flow.

We begin by considering Green’s third identity, stating that any two nonsingular functions
f (x, y) and g(x, y) satisfy the integral relationship∫∫

D

(f∇2g − g∇2f )dA =
∮
C

n · (g∇f − f∇g)dl, (B1)

where C is the boundary of a region D in the xy plane, and n is the unit vector normal to C
pointing inward. Assuming that the function f satisfies Laplace’s equation ∇2f = 0 and the
function g satisfies Poisson’s equation ∇2g = 1, we derive an expression for the areal integral
of f ,∫∫

D

f dA =
∮
C

n · (g∇f − f∇g)dl. (B2)

One choice for the function g is g(x, y) = 1
2 [α(x − xR)2 + (1 − α)(y − yR)2], where α

is an arbitrary constant, and (xR, yR) are the coordinates of an arbitrary point in the xy plane.
This choice with α = 1/2 was used in the computations reported in Section 5.

Considering now unidirectional pressure-driven through a cylindrical tube, we decompose
the axial velocity uz into two components as uz = f + v, where f is a harmonic solution
satisfying ∇2f = 0, v is an inhomogeneous solution satisfying the Poisson equation ∇2v =
−G/µ, and G is the negative of the pressure gradient. It will be convenient to set v(x, y) =
−Gg(x, y)/µ. The non-slip boundary condition requires f = −v around the tube contour C.
Next, we express the inhomogeneous solution as the divergence of a vector function h, writing
v = −(G/µ)∇ · h. For the particular choice stated at the end of the last paragraph, the scalar
components of h are given by hx = αx3/(6µ) and hy = (1 − α)y3/(6µ).

The axial flow rate through the tube may now be expressed as a boundary integral in the
convenient and computationally attractive form

Q ≡
∫∫

D

uzdA =
∫∫

D

(f + v)dA =
∮
C

n · (g∇uz + G

µ
h)dl. (B3)
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Once the normal derivative of uz around the tube is known, the integral on the right-hand
side of (B3) may be computed by numerical integration.
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